Finite-Repetition threshold for infinite ternary words

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Repetition threshold for infinite ternary words

The exponent of a word is the ratio of its length over its smallest period. The repetitive threshold r(a) of an a-letter alphabet is the smallest rational number for which there exists an infinite word whose finite factors have exponent at most r(a). This notion was introduced in 1972 by Dejean who gave the exact values of r(a) for every alphabet size a as it has been eventually proved in 2009....

متن کامل

Repetition Threshold for Circular Words

We find the threshold between avoidable and unavoidable repetitions in circular words over k letters for any k > 6. Namely, we show that the number CRT(k) = ⌈k/2⌉+1 ⌈k/2⌉ satisfies the following properties. For any n there exists a k-ary circular word of length n containing no repetition of exponent greater than CRT(k). On the other hand, k-ary circular words of some lengths must have a repetit...

متن کامل

Palindromes in infinite ternary words

We study infinite words u over an alphabet A satisfying the property P : P(n) + P(n + 1) = 1 +#A for any n ∈ N, where P(n) denotes the number of palindromic factors of length n occurring in the language of u. We study also infinite words satisfying a stronger property PE : every palindrome of u has exactly one palindromic extension in u . For binary words, the properties P and PE coincide and t...

متن کامل

Letter frequency in infinite repetition-free words

We estimate the extremal letter frequency in infinite words over a finite alphabet avoiding some repetitions. For ternary square-free words, we improve the bounds of Tarannikov on the minimal letter frequency, and prove that the maximal letter frequency is 255 653 . Kolpakov et al. have studied the function ρ such that ρ(x) is the minimal letter frequency in an infinite binary x-free word. In p...

متن کامل

Finite repetition threshold for large alphabets

We investigate the finite repetition threshold for k-letter alphabets, k ≥ 4, that is the smallest number r for which there exists an infinite r+-free word containing a finite number of r-powers. We show that there exists an infinite Dejean word on a 4-letter alphabet (i.e. a word without factors of exponent more than 7 5 ) containing only two 7 5 -powers. For a 5-letter alphabet, we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science

سال: 2011

ISSN: 2075-2180

DOI: 10.4204/eptcs.63.7